Statistics
Lecture 7

In-Person QZ 5
Given $P(A)=.4, P(B)=.8, P(A$ and $B)=.3$

1) $P(\bar{A})=1-P(A)=1-.4=.06$
2) Construct Venn Diagram.
3)

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& =.4+.8-.3=.9
\end{aligned}
$$

Some Review
Suppose $P(A)=92$

1) write $P(A)$ in Percent.

$$
.92(100) \%=92 \%
$$

2) write $P(A)$ in reduced fraction. .92 MATH I: Grace Enter

3) Find $P(\bar{A})$ in decimal.

$$
\begin{aligned}
P(\bar{A}) & =1-P(A) \quad \text { Complement Rule } \\
& =1-.92=.08
\end{aligned}
$$

4) find Odds in favor of event A.

Suppose the odds in favor of event E are

$$
3: 37
$$

1) Find odds against event E.

$$
37: 3
$$

2) find $P(E)$ in decimal. $P(E)=\frac{3}{3+37}=\frac{3}{40}$ $=.075$
3) Find $P(E)$ in reduced fraction.

$$
\begin{aligned}
& P(\bar{E})=1-P(E)=1-\frac{3}{40}=\frac{37}{40} \\
& 1 \square 30 \text { MATH 1: WraC Enter }
\end{aligned}
$$

Suppose $P(A)=.65, P(B)=.25, A \dot{\varepsilon} B$ are disjoint events.

$$
\text { 1) } P(\bar{A})=1-P(A)=1-.65=.35
$$

2) $P(A$ and $B)=0$ Since $A \dot{\varepsilon} B$ are M.E.E.
3) $P(A$ or

$$
\begin{aligned}
B) & =P(A)+P(B)-P(A \text { and } B) \\
& =.65+.25-0=.9
\end{aligned}
$$

4) Vern Diagram

Total $=1$

Apr 12-8:19 AM

Complete the Vern Diagram below

1) $P(A)=.35+.25=.06$

Total $=1$
2) $P(B)=.25+.30=.55$
3) $P(A \circ r B)$

$$
=.35+.25+.30=.9
$$

4) $P(A$ and $B)=25$
5) $P(A$ only $)=35$
6) $P(\bar{A})=4$
7) $P(B$ on $(4)=.3$
8) $P(\bar{B})=45$
9) $P(\bar{A}$ and $\bar{B})=P(\overline{A \circ r B})=1-.9=.1$

DeMorgan's Law
10) $P(\bar{A}$ or $\bar{B})=P(\overline{A \text { and } B})=1-.25=.75$

Multiplication Rule
keyword AND
multiple -Action Event
$P(A$ and $B)=P(A) \cdot P(B \mid A)$
A happens, then
B happens
Given

1) Independent events

If $A \dot{\varepsilon} B$ are independent events, then
$P(A$ and $B)=P(A) \cdot P(B)$
what are independent events? outcome of one event does not change the prob. of next outcome. having multiple Kids
$P(B)=.5, P(G)=.5$ on each birth.
Answering True/false questions by guessing

$$
P(T)=.5 \quad, P(F)=.5
$$

Suppose You are guessing on every question with multiple -choice (4 choices, only 1 correct

$$
P(C)=\frac{1}{4}, P(\bar{C})=\frac{3}{4}
$$

Suppose you draw cards from a standard deck of playing cards with replacement. $P($ Ace $)=\frac{4}{52}=\left[\frac{1}{13}\right.$ on each draw

$$
\begin{aligned}
& P(2 \text { Aces })=\frac{1}{13} \cdot \frac{1}{13}=\frac{1}{169} \\
& P(3 \text { Aces })=\frac{1}{13} \cdot \frac{1}{13} \cdot \frac{1}{13}=\frac{1}{2197}
\end{aligned}
$$

Apr 12-8:38 AM

$$
\begin{aligned}
& \text { Suppose } P(A)=.8, P(B)=.4, A \dot{\xi} B \text { are } \\
& P(\bar{A})=.2 \\
& P(\bar{B})=.6 \\
& P(A \text { and } B)=P(A) \cdot P(B)=(.8)(.4)=.32 \\
& P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B) \\
& =.8+.4-.32=.88 \\
& \text { Construct Venn Diagram }
\end{aligned}
$$

Suppose we flip a loaded coin twice.

$$
P(T)=.7 \quad, P(H)=.3
$$

$$
T T \quad P(2 \operatorname{tai}(s)=P(T T)=(.7)(.7)=0.49
$$

TH Sample
HT
$H H^{\text {Space }}$ $\mathbf{c}^{\text {Spa }}$

$$
\begin{aligned}
P(1 \text { tail }) & =P(T H \text { or } H T) \\
& =2(.7)(.3)=.42 \\
P(\text { Notails }) & =P(H H)=(.3)(.3)=.09
\end{aligned}
$$

$\#$ Tails	$P(\#$ Tails)
2	.49
1	.42
0	.09

clear all lists
\# Tails \rightarrow LI

$$
P(\# \text { tails }) \rightarrow L 2
$$

use 1 -var stats with LiE L2
to find

$$
\begin{aligned}
& \bar{x}=1.4 \\
& S_{x}=\text { blank } \\
& n=1 \& \frac{\text { Total }}{\text { Prob. }}=1
\end{aligned}
$$

Apr 12-8:57 AM

A box has 4 dimes and 6 nickels.
Take 2 coins with replacement.

multiplication rule with Tree diagram: A standard deck of playing cards has 52 fards and 12 face cards. Suppose we draw a cards with replacement. $P(F)=\frac{12}{52}=\frac{3}{13}$ on each draw $P(\bar{F})=\frac{40}{52}=\frac{10}{13}$ on each draw Sample space $P(F F)=\frac{3}{13} \cdot \frac{3}{13}=\frac{9}{169}$ $P(F \bar{F})=\frac{3}{13} \cdot \frac{10}{13}=\frac{30}{169}$ $P(F F)=\frac{10}{13} \cdot \frac{3}{13}=\frac{30}{169}$ $P(F \bar{F})=\frac{10}{13} \cdot \frac{10}{13}=\frac{100}{169}$ \#F \rightarrow L1 $P(\# F) \rightarrow L 2$ 1-var Stat with Liel L $\bar{\chi} \approx .462$ $S_{x}=B$ lank $n=1$

Apr 12-9:27 AM

Selecting 3 different people

$P($ at least one female) $=1-P($ No Female)

$$
\begin{aligned}
=1 & -P(\text { All Males }) \\
=1-1 / 57 & =\frac{46}{57}
\end{aligned}
$$

P (at least one Male) $=1-P($ No males $)$

$$
\begin{aligned}
& =1-P(\text { All Females }) \\
& =1-\frac{14}{285}=\frac{271}{285}
\end{aligned}
$$

Apr 12-9:53 AM

Multiplication Rule

$$
P(A \text { and } B)=P(A) \cdot P(B \mid A)
$$

with Some algebra

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Conditional Prob.

$$
\begin{aligned}
& P(A)=.6, P(B)=.4 \quad P(A \text { and } B)=.3 \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}=\frac{.3}{.6}=.5 \\
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{.3}{.4}=.75
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Donuts })=.7 \\
& P(\text { Coffee })=.8 \\
& P(\text { Donuts and } C \text { offer })=.6 \\
& P(\text { Donuts or coffee, not both })=.1+.2=.3 \\
& P(\text { Donuts | Coffee })=\frac{P(C \varepsilon D)}{P(\text { Coffee })}=\frac{.6}{.8}=\frac{3}{4}=.75 \\
& P(\text { Coffee } \mid \text { Donuts })=\frac{P(C \dot{\varepsilon}, D)}{P(D)}=\frac{.6}{.7}=\frac{6}{7}=. .857 \\
& P(\text { Donuts })=.7 \quad P(\text { Coffee })=.8 \quad P(D \text { or } C)=.9 \\
& \text { find } P(D \text { and } C) \text {. } \\
& P(D \text { or } C)=P(D)+P(C)-P(D \text { and } C) \\
& (9)^{(}=.7+.8-P(\text { Dandy }) \\
& P(D \text { and } C)=.7+.8-.9=.6
\end{aligned}
$$

Apr 12-10:08 AM

Consider a standard deck of playing cards. 52 cards, 4 Aces.
Draw 3 Cards, No replacement

\# Aces	$P(\#$ Aces $)$
3	$1 / 5525$
2	$72 / 5525$
1	$1128 / 5525$
0	$4324 / 5525$

\#Aces $\rightarrow L 1$
$P(\#$ Ares $) \rightarrow L 2$
1-var stats with LIEEL2
$\bar{\chi} \approx .231$
$S_{x}=$ Blank
$n=1$ Total Prob =1

In-Person QE 6
Given $\quad P(E)=.6$

1) Find $P(E)=1-P(E)=.4$
2) Odds in favor of event E.

$$
P(E): P(E) \quad .6: .4 \Rightarrow 3: 2
$$

3) odds against event E.

$$
2: 3
$$

